
 1

INCREASING THE IMAGE QUALITY IN A JPEG COMPRESSOR
THROUGH ARITHMETIC ERROR MINIMIZATION

Roger Endrigo Carvalho Porto[1], Bruno Silveira Neves[2],
Luciano Volcan Agostini[1][2], José Luís Almada Güntzel[1]

[1]Grupo de Arquiteturas e Circuitos Integrados (GACI)

Departamento de Informática – Universidade Federal de Pelotas (UFPEL)
Caixa Postal 354 – CEP 96010-900 – Pelotas – RS – Brasil

[2]Grupo de Microeletrônica (GME)

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre – RS – Brasil

{rogerecp, guntzel, agostini}@ufpel.edu.br, {bsneves, agostini}@inf.ufrgs.br

ABSTRACT

This paper presents solutions to increase the quality of a
JPEG compressor directed to gray scale images designed
in hardware in previous works. The focus of this paper is
to minimize the errors generated by three simplified
multipliers that are present into the 2-D DCT and
quantization calculations. The calculation error founded
through simulation was of 0.8% when the architectural
results are compared with ideal results. This is a very
small error but it may cause a high image distortion in the
decompression operation. The best solution designed in
this work increases de quality of the compressed data in a
rate higher than 93%. This solution generates an increase
of 7.8% in the use of logic cells and memory bits in the
complete JPEG compressor and it increases the
compressor period in 19.2%. This solution is able to
process 23 million of gray scale pixels per second.

1. INTRODUCTION

The principle of the JPEG compression is the use of
controllable losses to reach high compression rates. In this
context, the information is transformed to the frequency
domain through 2-D DCT [1]. Since neighbor pixels in an
image have high likelihood of showing small variations in
color, the DCT output will group the higher amplitudes in
the lower spatial frequencies [2]. Then, the higher spatial
frequencies can be discarded by the quantization,
generating a high compression rate and a small perceptible
loss in the image quality.

This paper presents an analysis of the internal
calculation errors generated by some simplifications that
were realized into the original compressor to minimize the
use of resources and to increase the compressor
performance. The sources of errors and theirs impacts are
presented in this paper and architectural solutions are
proposed and designed to minimize these errors. The
synthesis results of the designed architectures and the error
minimization obtained with these architectures are also
presented.

Section 2 of this paper presents a short introduction
about JPEG compression. Section 3 presents the error
evaluation in the original JPEG compressor. Section 4
presents the proposed solutions to minimize the errors
presented in section 3 and the architectures that were
designed to these proposed solutions. Section 5 presents
the synthesis results of the designed architectures into the
JPEG compressor. Finally, section 6 presents the
conclusions of this paper.

2. ORIGINAL JPEG COMPRESSOR
ARCHITECTURE

The JPEG compressor designed in hardware in previous
works [3], focus of this paper, uses the JPEG [4] baseline
compression mode [5]. The baseline compression mode
can be divided in three main steps, as is showed in Fig. 1:
2-D DCT (Two Dimensional Discrete Cosine Transform),
quantization and entropy coding.

 2

Figure 1 – JPEG baseline compression

The 2-D DCT and quantization architectures are

shortly presented in this section because only these
architectures perform arithmetical operations and, for
consequence, may generate calculations errors in theirs
outputs.

The DCT in two dimensions (2-D DCT) is the core of
the JPEG compression. This is the most critical module to
be designed in the JPEG compressor because of its high
algorithm complexity.

There are many algorithms to solve the 2-D DCT with
a small number of operations. The algorithm used in the
original implementation was proposed in [6] and modified
in [7]. This algorithm calculates the DCT in one
dimension (1-D DCT) and uses 29 additions and 5
multiplications. The 2-D DCT has the separability
property, thus, using two 1-D DCTs calculations it is
possible to generate the 2-D DCT results, as showed in
Fig. 2. In an 8x8 input matrix, the first 1-D DCT is applied
on the matrix lines then the second 1-D DCT is applied on
the columns of the first 1-D DCT results matrix. This
division reduces the calculation complexity.

Figure 2 – Block diagram of the 2-D DCT architecture

The original architecture for 1-D DCT calculation is

presented in Fig. 3. This architecture is based on the
architecture proposed by [7] and it uses ripple-carry
adders. The original multipliers was decomposed in shift-

adds operations, then the 2-D DCT architecture is a
multiplication free architecture. This multiplier is
highlighted in Fig. 3 because it is the main error generator
into the 1-D DCT architectures.

A transpose buffer connects the two 1-D DCT
architectures. This buffer was designed with two small 64-
word RAMs. When the first 1-D DCT architecture writes
the results line by line in one memory, the second 1-D
DCT architecture reads the input values column by column
from the other memory.

The quantization operation is an integer division of the
2-D DCT coefficients by pre-defined values. These pre-
defined values are stored in tables called quantization
tables. In JPEG baseline mode for gray scale images there
is just one quantization table. The optimum values of the
components in quantization table are dependent on the
application, but the JPEG standard suggests a typical table
that has a good efficiency for any application [5].

Quantization attenuates or eliminates the 2-D DCT
coefficients that are less perceptible to the human eye. The
result of this operation is a sparse matrix [2]. The
quantization architecture used in this paper is presented in
Fig. 4 and it uses one ROM and one multiplier to calculate
the quantized coefficients. The multiplier used in the
quantization is similar to that used in the two 1-D DCT
modules and it is an error generator too. The barrel shifter
control words for each value in the quantization table are
stored in ROM.

The multipliers used into the two 1-D DCT and into
the quantization architectures were decomposed in shifts
and adds to minimize the use of hardware resources. Since
one of the multiplier inputs is always a constant, it is
possible to preview the number of shifts necessary for
each calculation [3]. The shifts are performed by barrel
shifters.

 3

Figure 3 – 1-D DCT architecture

Figure 4 – Quantization architecture

Just four shift-adds are used in the original multipliers
architecture to save arithmetic units. Internally to the
multipliers all the significant bits were considered to
maximize the precision of this calculation but the
multiplier outputs are truncated to discard the fractionary
part of this internal result. These simplifications generate
errors into the calculated results because a finite number of
additions of different shifts are used and the multiplication
result is truncated. The original multiplier architecture is
showed in Fig. 5.

All other arithmetic operations into the 2-D DCT and
quantization architectures do not generate errors. These
other operations are additions or subtractions of integer
numbers and all architectural operators consider one
additional bit when carry out is generated.

The last operation in a JPEG compression is the
entropy coding that uses several losses less compression
techniques to reduce the amount of bits necessary to
represent the image [2]. This operation does not generate
arithmetic calculation errors and then, it will not be
detailed in this paper.

Figure 5 – Original Multiplier architecture used

into the two 1-D DCT and into Quantization blocks

3. ERROR EVALUATION IN THE ORIGINAL JPEG
COMPRESSOR

To evaluate the error generated into the JPEG compressor
were designed two descriptions of the compressor in C
language. The first one does not consider the architecture
restrictions and, for consequence, it does not generate
errors. This description was used to generate accurate
results to be compared with the architectural results. The
second C code is a literal and detailed description of the
designed architecture of the JPEG compressor. The results
generated by this second description were used to evaluate
the JPEG compressor error.

Only the first and the second JPEG compressor blocks
in Fig. 1 (2-D DCT and Quantization) operate data
calculation and then, for this, only these blocks may
generate arithmetical errors. These errors are caused by
simplifications into the designed operators. Special
attention was given to the multipliers used into the two 1-
D DCT and into the quantization architectures. The
original multipliers architectures were accurately designed
in the C description of the architecture to make sure that
the comparative results were considering the effects of the
shift-adds in the image quality.

Another important aspect that was considered in the
multipliers architecture description in C was the truncating
realized in the multipliers outputs. This was realized to
eliminate the fractionary part of the results, once the
entropy coder, that uses the quantization results, is able to
process just integer numbers. There is an incrementer in
the original multipliers output, as showed in Fig 5, but this
incrementer is used just to correct the negative results and
it is not used to round the multiplier outputs. The absence
of this rounding operation is another potential generator of
arithmetical errors and it was preserved in the C
description of the designed architecture.

It is important to emphasize that the errors that this
paper aims to minimize are not the errors relative to the
losses generated for the process of JPEG compression.
The errors focused in this paper are generated by the
truncations and rounds realized in the internal compression
calculations. These truncations are performed because the
designed JPEG compressor architecture uses fixed point in
the internal results representation. The JPEG compression
standard defines that these results must use a floating point
representation. Basically, the operations in floating point
that had been truncated or rounded to be represented in
fixed point were multiplications by cosines.

The JPEG compression is a lossy compression and
then, a part of the information included in the original
image is eliminated in an irreversible way.

This loss of information is controlled to not harm the
image perception by the human eye [3]. On the other hand,
the truncations and rounds errors that are generated in the

internal calculation of the proposed architecture can have a
catastrophic influence in the image quality when the
decompression process is realized. In this process, the
truncations and rounds errors will modify significantly the
value of some image pixels when the inverse quantization
is performed. In this operation, an error of one unit in the
input value can cause an error of up to 100 units in the
output value and, therefore, these errors must be
minimized or eliminated and this is the goal of this work.

Were designed a group of thirty matrixes of sixty four
elements in each one to stimulate the two C descriptions
designed to comparing the ideal results with the
architectural results and for evaluating the architectural
errors. These input matrixes were specially constructed to
generate a high error in the outputs and to sensitize all the
architectural critical modules.

The first simulation was made to discover the error that
was generated by the hardware implementation of the
original JPEG compressor. The quantization outputs of the
implementation without errors it were compared with the
quantization outputs of the architectural implementation.
This comparison was made for all the thirty matrixes and it
generates thirty error matrixes. The error matrixes were
generated through a simple subtraction of the ideal value
of each element of each matrix by the value of the same
matrix element generated through the architectural
description.

The modules of all elements of the thirty error matrixes
were added to generate the absolute error. For these thirty
matrixes, the absolute error was of 29 units. This number
represents an error of 0.7932166 percent in all JPEG
compressor calculations for this group of matrixes. This is
a very small error, but may not be an acceptable error in
applications where the image quality is the primordial
factor. Then, some architectural alternatives were explored
to minimize these errors. These alternatives are presented
in the next section of this paper.

4. PROPOSED SOLUTIONS TO MINIMIZE THE

ERROR

The comparisons between the ideal results and the
architectural results confirm that the multipliers of the two
1-D DCT and quantization were the unique generators of
arithmetic errors into the JPEG architecture. Then some
improvements in these multipliers were proposed and
designed.

The first alternative proposed to improve the multiplier
results was the design of a rounding operator to be used in
the multipliers output. With this solution, it was possible
to eliminate the errors generated by the truncation of the
results in the original architecture.

The designed solution uses the incrementer that is
included in the original architecture to minimize the use of

 5

resources. The original incrementer was used to correct
the negative results. The multiplier designed through shift-
adds presents one unitary error in all negative results, then,
the original incrementer was used to add one in all
negative results and, for consequence, to correct these
results. Then the original incrementer adds the signal bit
that is the most significant bit (MSB) to the integer part of
the multiplication results.

To generate a rounding operator, another incrementer
is needed. This new incrementer is used to add one in the
integer part of the multiplications results if the most
significant bit of the fractionary part is one. Then, this new
incrementer must add the most significant bit of the
fractionary part of the result and the integer part of this
result. A single architecture was designed to join these two
incrementers in just one operator. This architecture is
presented in Fig. 6.

Figure 6 – Rounding architecture used
in the multipliers outputs

The architecture presented in Fig. 6 uses one adder that

receives as input A the integer part of the multiplier result
and as input B a two bit value generated according Tab. 1.
In Tab. 1 the column MSB indicates the value of the most
significant bit of the multiplier result (that is the signal of
the result) and the column FMSB indicates the value of
the fractionary most significant bit. As showed in Fig. 6, to
implement the function of the truth table presented in Tab.
1 was used one multiplexer with constants “00”, “01” and
“10” as inputs and with the bits MSB and FMSB extracted
from the multiplier result used as control signals.

The second alternative designed to improve the
multiplier results was the use of more accuracy constants
in the multiplications of the 2-D DCT and quantization. As
explained in section 2, one of the multipliers inputs is
always a constant and the other input is a variable value.

Table 1 – Truth table for the B input of the adder

MSB FMSB B Input

0 0 00
0 1 01
1 0 01
1 1 10

To increase the quality of the multiplications results it

is necessary to improve the accuracy of the used constants.
This means that the number of shifts that are added must
increase. Then, three alternative solutions were designed
in C language. These solutions use respectively five, six
and seven shifts-adds into the three multipliers and they
use the rounding architecture presented in Fig. 6.
Comparing the results of these three alternative multipliers
with the original multiplier and with the ideal multiplier it
was possible to evaluate the results in quality
improvements and the residual calculation error. These
comparing results are presented in Tab. 2 and are related
to the same group of thirty matrixes used previously.

Table 2 – Quality improvements and residual error

generated through alternative multipliers architectures

Solution Quality
Improvements

Residual
Error

Four shift-adds - 0.793%
Five shift-adds 75.862% 0.192%
Six shift-adds 82.759% 0.137%

Seven shift-adds 93.104% 0.055%

From Tab. 2 is possible to notice that the use of
rounding and the increase of the number of shit-adds, as
expected, improve significantly the JPEG compressor
results. The quality of the results with the multipliers using
seven shifts was 93% better than with the original JPEG
architecture multipliers. But there is a residual error in the
final simulation results. This error is around 0.06% using
seven shifts into the multipliers to the selected group of
thirty matrixes. For typical matrixes, extracted from real
images, this error will be near to zero.

Fig. 7 presents, as example, the architecture proposed
for the multipliers using seven shifts to be added. As it can
be notice, this architecture is significantly larger than the
original architecture presented in Fig. 5. The figure of the
multiplier architectures using five and six shifts will not be
presented in this paper.

 6

Figure 7 – Multiplier using seven shift-adds designed to minimize the arithmetic errors
 in the two 1-D DCT and in the quantization architectures

5. SYNTHESIS RESULTS

The proposed multipliers that were designed and simulated
in C language were designed in VHDL and synthesized for
Altera [8] FPGAs from Flex 10KE family [9]. Tab. 3
shows the JPEG compressor synthesis results to each
alternative solution that was designed.

Table 3 – JPEG compressor synthesis results

using the alternative multipliers

Solution Area
(LCs)

Memory
(bits)

Period
(ns)

Frequency
(MHz)

Four
shift-adds 4454 7436 36.5 27.40

Five
shift-adds 4613 7628 39.7 25.19

Six
shift-adds 4714 7820 41.5 24.10

Seven
shift-adds 4802 8012 43.5 22.99

EPF10K130EQC240-1 FLEX10KE Altera device

As expected, the use of more shifts into the multipliers

implies in an increase in the use of logic cells an in the use
of memory bits. The use of logic cells occur because new
barrel shifters, new registers and new adders are joined to

the multiplier architecture at each increase in the number
of used shifts. Tab. 4 presents this relation between the
number of shifts and the hardware resources.

Tab. 4 presents also the number of bits used in the
words of the quantization ROM to each designed solution.
The barrel shifters controls are stored into this ROM and
each one uses three bits in each memory word.

The increase in the number of shifts used into the
multipliers caused also a reduction in the JPEG
compressor operation frequency, as showed in Tab. 3.

Table 4 – Use of hardware resources into the
multipliers solutions

Solution
of

Barrel
Shifters

of
Registers

of
Adders

Memory
Word
(bits)

Four
shift-adds 4 4 4 12

Five
 shift-adds 5 7 5 15

Six
shift-adds 6 7 6 18

Seven
shift-adds 7 8 7 21

Tab. 5 presents a comparison between the designed
solutions. It presents the losses in terms of use of

 7

resources, the losses in terms of period and the
improvements in terms of image quality.

The best multiplier solution in terms of image quality
is the one with seven shifts. This solution is able to
process 23 million of gray scale pixels per second,
generating an arithmetical error of 0.05%. This
architecture is able to process 74.8 frames of 640x480
pixels in one second.

The solution that uses six shift-adds is able to process
24 million of gray scale pixels per second, generating an
error of 0.14%. This architecture is able to process 78.4
frames of 640x480 pixels in one second.

Table 5 – Comparative results between the alternative
multipliers used into the JPEG compressor

Solution Four
shift-adds

Five
shift-adds

Six
shift-adds

Seven
shift-adds

Logic Cells
Losses - 3.57% 5.84% 7.81%

Memory Bits
Losses - 2.58% 5.16% 7.75%

Period
Losses - 8.77% 13.70% 19.18%

Quality
Improvements - 75.86% 82.76% 93.10%

The compressor that uses multipliers with five shift-

adds is able to process 25 million of gray scale pixels per
second, generating an error of 0.19%. This compressor is
able to process 82 frames of 640x480 pixels in one
second.

The original architecture, using four shift-adds, is able
to process 27 million of gray scale pixels per second,
generating an error of 0.79%. The original architecture is
able to compress 89 frames of 640x480 pixels in one
second.

6. CONCLUSIONS

This paper presented solutions to increase the quality of
the image generated by a JPEG compressor directed to
gray scale images designed in previous works. To
minimize the errors generated by this compressor the first
step was the accurate evaluation of these errors through
simulations in C language. These simulations indicated
that the error was of 0.8% when the architectural results
are compared with ideal results.

Some architectural modifications were designed in
VHDL to increase the quality of the image generated by
the original JPEG compressor architecture. These
modifications were focused in three simplified multipliers
that are used into the JPEG compressor. The designed
solutions increase the image quality through the use of

four, five, six or seven shift-adds into the multipliers and
through the use of a rounding architecture in the
multipliers output. The synthesis results of the designed
solutions were presented and analyzed in this paper.

The best solution in terms of the quality of the
compressed data uses seven shift-adds into its multipliers.
This solution improves the image quality in a rate higher
than 93% and it reduces the errors to 0.06%. This best
solution generates an increase of 7.8% in the use of logic
cells and memory bits and it increases the compressor
period in 19.2%. This solution is able to process 23
million of gray scale pixels per second reaching a
processing rate of 74.8 frames of 640x480 pixels per
second.

The simulation and synthesis results of all designed
solutions were presented in details in this paper. These
results were considered satisfactory because the quality
improvement was significant and the impacts in terms of
use of resources and in terms of performance were not
very high. An interesting investigation that was not
designed in this paper is the use of faster adder operators
joined with the solution that uses seven shift-adds into the
multiplier. Then, the performance of the modified JPEG
compressor should increase and it should be equal or
higher than the original compressor performance with a
calculation error near to zero.

7. REFERENCES

[1] Pennebaker, W., and J. Mitchell. JPEG Still Image
Data Compression Standard, Van Nostrand Reinhold,
USA, 1992.

[2] Bhaskaran, V., and K. Konstantinides. Image and
Video Compression Standards Algorithms and
Architectures – Second Edition, Kluwer Academic
Publishers, USA, 1999.

[3] L. V. Agostini, “Design of Architectures for JPEG
Image Compression” (Portuguese). Master
Dissertation – Federal University of Rio Grande do
Sul. Informatics Institute. Pos-Graduation in
Computer Science Program, Porto Alegre, RS, Brazil,
2002. 143p.

[4] JPEG and JBIG Committees, “Home Site of the JPEG
and JBIG Committees” <http://www.jpeg.org>

[5] The International Telegraph and Telephone
Consultative Committee (CCITT). “Information
Technology – Digital Compression and Coding of
Continuous-Tone Still Images – Requirements and
Guidelines”, Rec. T.81, 1992.

 8

[6] Y. Arai, T. Agui and M. Nakajima, “A Fast DCT-SQ
Scheme for Images”. Transactions of IEICE, vol.
E71, n°. 11, pp. 1095-1097, 1988.

[7] M. Kovac, and N. Ranganathan, “JAGAR: A Fully
Pipeline VLSI Architecture for JPEG Image
Compression Standard”. Proceedings of the IEEE,
vol. 83, n°. 2, pp. 247-258, 1995.

[8] ALTERA Corporation, Altera: The Programmable
Solutions Company, San Jose: Altera Corporation,
Available in: <http://www.altera.com> 2003.

[9] ALTERA Corporation. FLEX 10KE – Embedded
Programmable Logic Devices Data Sheet – version 2.3.
San Jose, Altera Corporation, 2001.

