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ABSTRACT 
 
This paper presents solutions to increase the quality of a 
JPEG compressor directed to gray scale images designed 
in hardware in previous works. The focus of this paper is 
to minimize the errors generated by three simplified 
multipliers that are present into the 2-D DCT and 
quantization calculations. The calculation error founded 
through simulation was of 0.8% when the architectural 
results are compared with ideal results. This is a very 
small error but it may cause a high image distortion in the 
decompression operation. The best solution designed in 
this work increases de quality of the compressed data in a 
rate higher than 93%. This solution generates an increase 
of 7.8% in the use of logic cells and memory bits in the 
complete JPEG compressor and it increases the 
compressor period in 19.2%. This solution is able to 
process 23 million of gray scale pixels per second.  
 

1. INTRODUCTION 
 
The principle of the JPEG compression is the use of 
controllable losses to reach high compression rates. In this 
context, the information is transformed to the frequency 
domain through 2-D DCT [1]. Since neighbor pixels in an 
image have high likelihood of showing small variations in 
color, the DCT output will group the higher amplitudes in 
the lower spatial frequencies [2]. Then, the higher spatial 
frequencies can be discarded by the quantization, 
generating a high compression rate and a small perceptible 
loss in the image quality. 

This paper presents an analysis of the internal 
calculation errors generated by some simplifications that 
were realized into the original compressor to minimize the 
use of resources and to increase the compressor 
performance. The sources of errors and theirs impacts are 
presented in this paper and architectural solutions are 
proposed and designed to minimize these errors. The 
synthesis results of the designed architectures and the error 
minimization obtained with these architectures are also 
presented. 

Section 2 of this paper presents a short introduction 
about JPEG compression. Section 3 presents the error 
evaluation in the original JPEG compressor. Section 4 
presents the proposed solutions to minimize the errors 
presented in section 3 and the architectures that were 
designed to these proposed solutions. Section 5 presents 
the synthesis results of the designed architectures into the 
JPEG compressor. Finally, section 6 presents the 
conclusions of this paper. 
 

2. ORIGINAL JPEG COMPRESSOR 
ARCHITECTURE 

 
The JPEG compressor designed in hardware in previous 
works [3], focus of this paper, uses the JPEG [4] baseline 
compression mode [5]. The baseline compression mode 
can be divided in three main steps, as is showed in Fig. 1: 
2-D DCT (Two Dimensional Discrete Cosine Transform), 
quantization and entropy coding. 
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Figure 1 – JPEG baseline compression 

 
The 2-D DCT and quantization architectures are 

shortly presented in this section because only these 
architectures perform arithmetical operations and, for 
consequence, may generate calculations errors in theirs 
outputs. 

The DCT in two dimensions (2-D DCT) is the core of 
the JPEG compression. This is the most critical module to 
be designed in the JPEG compressor because of its high 
algorithm complexity. 

There are many algorithms to solve the 2-D DCT with 
a small number of operations. The algorithm used in the 
original implementation was proposed in [6] and modified 
in [7]. This algorithm calculates the DCT in one 
dimension (1-D DCT) and uses 29 additions and 5 
multiplications. The 2-D DCT has the separability 
property, thus, using two 1-D DCTs calculations it is 
possible to generate the 2-D DCT results, as showed in 
Fig. 2. In an 8x8 input matrix, the first 1-D DCT is applied 
on the matrix lines then the second 1-D DCT is applied on 
the columns of the first 1-D DCT results matrix. This 
division reduces the calculation complexity.  

 

 
Figure 2 – Block diagram of the 2-D DCT architecture 

 
The original architecture for 1-D DCT calculation is 

presented in Fig. 3. This architecture is based on the 
architecture proposed by [7] and it uses ripple-carry 
adders. The original multipliers was decomposed in shift-

adds operations, then the 2-D DCT architecture is a 
multiplication free architecture. This multiplier is 
highlighted in Fig. 3 because it is the main error generator 
into the 1-D DCT architectures. 

A transpose buffer connects the two 1-D DCT 
architectures. This buffer was designed with two small 64-
word RAMs. When the first 1-D DCT architecture writes 
the results line by line in one memory, the second 1-D 
DCT architecture reads the input values column by column 
from the other memory. 

The quantization operation is an integer division of the 
2-D DCT coefficients by pre-defined values. These pre-
defined values are stored in tables called quantization 
tables. In JPEG baseline mode for gray scale images there 
is just one quantization table. The optimum values of the 
components in quantization table are dependent on the 
application, but the JPEG standard suggests a typical table 
that has a good efficiency for any application [5]. 

Quantization attenuates or eliminates the 2-D DCT 
coefficients that are less perceptible to the human eye. The 
result of this operation is a sparse matrix [2]. The 
quantization architecture used in this paper is presented in 
Fig. 4 and it uses one ROM and one multiplier to calculate 
the quantized coefficients. The multiplier used in the 
quantization is similar to that used in the two 1-D DCT 
modules and it is an error generator too. The barrel shifter 
control words for each value in the quantization table are 
stored in ROM. 

The multipliers used into the two 1-D DCT and into 
the quantization architectures were decomposed in shifts 
and adds to minimize the use of hardware resources. Since 
one of the multiplier inputs is always a constant, it is 
possible to preview the number of shifts necessary for 
each calculation [3]. The shifts are performed by barrel 
shifters. 
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Figure 3 – 1-D DCT architecture 

 
Figure 4 – Quantization architecture 

 
 

Just four shift-adds are used in the original multipliers 
architecture to save arithmetic units. Internally to the 
multipliers all the significant bits were considered to 
maximize the precision of this calculation but the 
multiplier outputs are truncated to discard the fractionary 
part of this internal result. These simplifications generate 
errors into the calculated results because a finite number of 
additions of different shifts are used and the multiplication 
result is truncated. The original multiplier architecture is 
showed in Fig. 5. 

 

All other arithmetic operations into the 2-D DCT and 
quantization architectures do not generate errors. These 
other operations are additions or subtractions of integer 
numbers and all architectural operators consider one 
additional bit when carry out is generated.  

The last operation in a JPEG compression is the 
entropy coding that uses several losses less compression 
techniques to reduce the amount of bits necessary to 
represent the image [2]. This operation does not generate 
arithmetic calculation errors and then, it will not be 
detailed in this paper. 

 

 
Figure 5 – Original Multiplier architecture used  

into the two 1-D DCT and into Quantization blocks 



3. ERROR EVALUATION IN THE ORIGINAL JPEG 
COMPRESSOR 

 
To evaluate the error generated into the JPEG compressor 
were designed two descriptions of the compressor in C 
language. The first one does not consider the architecture 
restrictions and, for consequence, it does not generate 
errors. This description was used to generate accurate 
results to be compared with the architectural results. The 
second C code is a literal and detailed description of the 
designed architecture of the JPEG compressor. The results 
generated by this second description were used to evaluate 
the JPEG compressor error. 

Only the first and the second JPEG compressor blocks 
in Fig. 1 (2-D DCT and Quantization) operate data 
calculation and then, for this, only these blocks may 
generate arithmetical errors. These errors are caused by 
simplifications into the designed operators. Special 
attention was given to the multipliers used into the two 1-
D DCT and into the quantization architectures. The 
original multipliers architectures were accurately designed 
in the C description of the architecture to make sure that 
the comparative results were considering the effects of the 
shift-adds in the image quality.  

Another important aspect that was considered in the 
multipliers architecture description in C was the truncating 
realized in the multipliers outputs. This was realized to 
eliminate the fractionary part of the results, once the 
entropy coder, that uses the quantization results, is able to 
process just integer numbers. There is an incrementer in 
the original multipliers output, as showed in Fig 5, but this 
incrementer is used just to correct the negative results and 
it is not used to round the multiplier outputs. The absence 
of this rounding operation is another potential generator of 
arithmetical errors and it was preserved in the C 
description of the designed architecture. 

It is important to emphasize that the errors that this 
paper aims to minimize are not the errors relative to the 
losses generated for the process of JPEG compression. 
The errors focused in this paper are generated by the 
truncations and rounds realized in the internal compression 
calculations. These truncations are performed because the 
designed JPEG compressor architecture uses fixed point in 
the internal results representation. The JPEG compression 
standard defines that these results must use a floating point 
representation. Basically, the operations in floating point 
that had been truncated or rounded to be represented in 
fixed point were multiplications by cosines. 

The JPEG compression is a lossy compression and 
then, a part of the information included in the original 
image is eliminated in an irreversible way. 

This loss of information is controlled to not harm the 
image perception by the human eye [3]. On the other hand, 
the truncations and rounds errors that are generated in the 

internal calculation of the proposed architecture can have a 
catastrophic influence in the image quality when the 
decompression process is realized. In this process, the 
truncations and rounds errors will modify significantly the 
value of some image pixels when the inverse quantization 
is performed.  In this operation, an error of one unit in the 
input value can cause an error of up to 100 units in the 
output value and, therefore, these errors must be 
minimized or eliminated and this is the goal of this work. 

Were designed a group of thirty matrixes of sixty four 
elements in each one to stimulate the two C descriptions 
designed to comparing the ideal results with the 
architectural results and for evaluating the architectural 
errors. These input matrixes were specially constructed to 
generate a high error in the outputs and to sensitize all the 
architectural critical modules. 

The first simulation was made to discover the error that 
was generated by the hardware implementation of the 
original JPEG compressor. The quantization outputs of the 
implementation without errors it were compared with the 
quantization outputs of the architectural implementation. 
This comparison was made for all the thirty matrixes and it 
generates thirty error matrixes. The error matrixes were 
generated through a simple subtraction of the ideal value 
of each element of each matrix by the value of the same 
matrix element generated through the architectural 
description. 

The modules of all elements of the thirty error matrixes 
were added to generate the absolute error. For these thirty 
matrixes, the absolute error was of 29 units. This number 
represents an error of 0.7932166 percent in all JPEG 
compressor calculations for this group of matrixes. This is 
a very small error, but may not be an acceptable error in 
applications where the image quality is the primordial 
factor. Then, some architectural alternatives were explored 
to minimize these errors. These alternatives are presented 
in the next section of this paper. 

 
4. PROPOSED SOLUTIONS TO MINIMIZE THE 

ERROR 
 
The comparisons between the ideal results and the 
architectural results confirm that the multipliers of the two 
1-D DCT and quantization were the unique generators of 
arithmetic errors into the JPEG architecture. Then some 
improvements in these multipliers were proposed and 
designed. 

The first alternative proposed to improve the multiplier 
results was the design of a rounding operator to be used in 
the multipliers output. With this solution, it was possible 
to eliminate the errors generated by the truncation of the 
results in the original architecture.  

The designed solution uses the incrementer that is 
included in the original architecture to minimize the use of 
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resources. The original incrementer was used to correct 
the negative results. The multiplier designed through shift-
adds presents one unitary error in all negative results, then, 
the original incrementer was used to add one in all 
negative results and, for consequence, to correct these 
results. Then the original incrementer adds the signal bit 
that is the most significant bit (MSB) to the integer part of 
the multiplication results. 

To generate a rounding operator, another incrementer 
is needed. This new incrementer is used to add one in the 
integer part of the multiplications results if the most 
significant bit of the fractionary part is one. Then, this new 
incrementer must add the most significant bit of the 
fractionary part of the result and the integer part of this 
result. A single architecture was designed to join these two 
incrementers in just one operator. This architecture is 
presented in Fig. 6. 
 

 
 

Figure 6 – Rounding architecture used  
in the multipliers outputs 

 
The architecture presented in Fig. 6 uses one adder that 

receives as input A the integer part of the multiplier result 
and as input B a two bit value generated according Tab. 1. 
In Tab. 1 the column MSB indicates the value of the most 
significant bit of the multiplier result (that is the signal of 
the result) and the column FMSB indicates the value of 
the fractionary most significant bit. As showed in Fig. 6, to 
implement the function of the truth table presented in Tab. 
1 was used one multiplexer with constants “00”, “01” and 
“10” as inputs and with the bits MSB and FMSB extracted 
from the multiplier result used as control signals. 

The second alternative designed to improve the 
multiplier results was the use of more accuracy constants 
in the multiplications of the 2-D DCT and quantization. As 
explained in section 2, one of the multipliers inputs is 
always a constant and the other input is a variable value.  

 
Table 1 – Truth table for the B input of the adder 

MSB FMSB B Input 

0 0 00 
0 1 01 
1 0 01 
1 1 10 

 
To increase the quality of the multiplications results it 

is necessary to improve the accuracy of the used constants. 
This means that the number of shifts that are added must 
increase. Then, three alternative solutions were designed 
in C language. These solutions use respectively five, six 
and seven shifts-adds into the three multipliers and they 
use the rounding architecture presented in Fig. 6. 
Comparing the results of these three alternative multipliers 
with the original multiplier and with the ideal multiplier it 
was possible to evaluate the results in quality 
improvements and the residual calculation error. These 
comparing results are presented in Tab. 2 and are related 
to the same group of thirty matrixes used previously. 

 
Table 2 – Quality improvements and residual error 

generated through alternative multipliers architectures 

Solution Quality 
Improvements 

Residual  
Error 

Four shift-adds - 0.793% 
Five shift-adds 75.862% 0.192% 
Six shift-adds 82.759% 0.137% 

Seven shift-adds 93.104% 0.055% 
 

From Tab. 2 is possible to notice that the use of 
rounding and the increase of the number of shit-adds, as 
expected, improve significantly the JPEG compressor 
results. The quality of the results with the multipliers using 
seven shifts was 93% better than with the original JPEG 
architecture multipliers. But there is a residual error in the 
final simulation results. This error is around 0.06% using 
seven shifts into the multipliers to the selected group of 
thirty matrixes. For typical matrixes, extracted from real 
images, this error will be near to zero. 

Fig. 7 presents, as example, the architecture proposed 
for the multipliers using seven shifts to be added. As it can 
be notice, this architecture is significantly larger than the 
original architecture presented in Fig. 5. The figure of the 
multiplier architectures using five and six shifts will not be 
presented in this paper. 



 6

 
 

Figure 7 – Multiplier using seven shift-adds designed to minimize the arithmetic errors 
 in the two 1-D DCT and in the quantization architectures 

 
 

5. SYNTHESIS RESULTS 
 
The proposed multipliers that were designed and simulated 
in C language were designed in VHDL and synthesized for 
Altera [8] FPGAs from Flex 10KE family [9]. Tab. 3 
shows the JPEG compressor synthesis results to each 
alternative solution that was designed. 

 
Table 3 – JPEG compressor synthesis results  

using the alternative multipliers 

Solution Area 
(LCs) 

Memory 
(bits) 

Period 
(ns) 

Frequency
(MHz) 

Four  
shift-adds 4454 7436 36.5 27.40 

Five  
shift-adds 4613 7628 39.7 25.19 

Six  
shift-adds 4714 7820 41.5 24.10 

Seven  
shift-adds 4802 8012 43.5 22.99 

EPF10K130EQC240-1 FLEX10KE Altera device  
 
As expected, the use of more shifts into the multipliers 

implies in an increase in the use of logic cells an in the use 
of memory bits. The use of logic cells occur because new 
barrel shifters, new registers and new adders are joined to 

the multiplier architecture at each increase in the number 
of used shifts. Tab. 4 presents this relation between the 
number of shifts and the hardware resources. 

Tab. 4 presents also the number of bits used in the 
words of the quantization ROM to each designed solution. 
The barrel shifters controls are stored into this ROM and 
each one uses three bits in each memory word. 

The increase in the number of shifts used into the 
multipliers caused also a reduction in the JPEG 
compressor operation frequency, as showed in Tab. 3. 
 

Table 4 – Use of hardware resources into the  
multipliers solutions 

Solution 
# of 

Barrel 
Shifters 

# of 
Registers 

# of 
Adders 

Memory 
Word 
(bits) 

Four  
shift-adds 4 4 4 12 

Five 
 shift-adds 5 7 5 15 

Six  
shift-adds 6 7 6 18 

Seven  
shift-adds 7 8 7 21 

Tab. 5 presents a comparison between the designed 
solutions. It presents the losses in terms of use of 
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resources, the losses in terms of period and the 
improvements in terms of image quality. 

The best multiplier solution in terms of image quality 
is the one with seven shifts. This solution is able to 
process 23 million of gray scale pixels per second, 
generating an arithmetical error of 0.05%. This 
architecture is able to process 74.8 frames of 640x480 
pixels in one second. 

The solution that uses six shift-adds is able to process 
24 million of gray scale pixels per second, generating an 
error of 0.14%. This architecture is able to process 78.4 
frames of 640x480 pixels in one second. 
 

Table 5 – Comparative results between the alternative 
multipliers used into the JPEG compressor 

Solution Four  
shift-adds 

Five  
shift-adds 

Six  
shift-adds 

Seven 
shift-adds

Logic Cells 
Losses - 3.57% 5.84% 7.81% 

Memory Bits 
Losses - 2.58% 5.16% 7.75% 

Period  
Losses - 8.77% 13.70% 19.18% 

Quality 
Improvements - 75.86% 82.76% 93.10% 

 
The compressor that uses multipliers with five shift-

adds is able to process 25 million of gray scale pixels per 
second, generating an error of 0.19%. This compressor is 
able to process 82 frames of 640x480 pixels in one 
second. 

The original architecture, using four shift-adds, is able 
to process 27 million of gray scale pixels per second, 
generating an error of 0.79%. The original architecture is 
able to compress 89 frames of 640x480 pixels in one 
second. 

 
6. CONCLUSIONS 

 
This paper presented solutions to increase the quality of 
the image generated by a JPEG compressor directed to 
gray scale images designed in previous works. To 
minimize the errors generated by this compressor the first 
step was the accurate evaluation of these errors through 
simulations in C language. These simulations indicated 
that the error was of 0.8% when the architectural results 
are compared with ideal results.  

Some architectural modifications were designed in 
VHDL to increase the quality of the image generated by 
the original JPEG compressor architecture. These 
modifications were focused in three simplified multipliers 
that are used into the JPEG compressor. The designed 
solutions increase the image quality through the use of  

four, five, six or seven shift-adds into the multipliers and 
through the use of a rounding architecture in the 
multipliers output. The synthesis results of the designed 
solutions were presented and analyzed in this paper.  

The best solution in terms of the quality of the 
compressed data uses seven shift-adds into its multipliers. 
This solution improves the image quality in a rate higher 
than 93% and it reduces the errors to 0.06%. This best 
solution generates an increase of 7.8% in the use of logic 
cells and memory bits and it increases the compressor 
period in 19.2%. This solution is able to process 23 
million of gray scale pixels per second reaching a 
processing rate of 74.8 frames of 640x480 pixels per 
second.  

The simulation and synthesis results of all designed 
solutions were presented in details in this paper. These 
results were considered satisfactory because the quality 
improvement was significant and the impacts in terms of 
use of resources and in terms of performance were not 
very high. An interesting investigation that was not 
designed in this paper is the use of faster adder operators 
joined with the solution that uses seven shift-adds into the 
multiplier. Then, the performance of the modified JPEG 
compressor should increase and it should be equal or 
higher than the original compressor performance with a 
calculation error near to zero. 
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